ULID + Ecto

Presented by @andreicek

Ox7%



https://0x7f.dev/

About me

e JavaScript dev for 6 yrs
e Python dev for 2 yrs
e Elixir freelancer for 1 yr

o "Why was | writing so
much code?!" ~ me, circa
2021.




1. Remembering UUID
2. What's ULID

3. Integration

4. Use cases

5. Alternatives

The Plan



So what’s UUID?

Universally Unique IDentifier (UUID) URN Namespace RFC 4122

Mostly unique identifiers

Globally accepted solution for database IDs

4a823cf9-b89b-40bb-b823-1d98151feeB2



And what’s wrong with that?

users = for username <« ~w(andrei dino vlado) do
%{
id: : .bingenerate(),
username: username

}




And what’s wrong with that?

SELECT username FROM users SORT BY username;

e UUIDs are not lexicographically sortable.



Collisions who?

def () do
<«Lu@::48, _::4, ul::12, _::2, u2::62>> = :.crypto.strong_rand_bytes(16)
<Ku0::48, 4::4, ul::12, 2::2, uUu2::62>>

end

def (timestamp \\ .system_time(:millisecond)) do
<<timestamp::unsigned-size(48), :crypto.strong_rand_bytes(10) ::binary>>
end

TBH UUIDs won't really colide all that often :D



OK, sold. Let's integrate.

defmodule
use

def do
create table("notes", primary_key: false) do
add(:id, :binary_id, primary_key: true)
add(:text, :text)

timestamps ()
end
end
end

, 1_.653_764_519,




OK, sold. Let's integrate.

defmodule
use

@primary_key {:1id, : , autogenerate: true}

schema "notes" do
field(:text, :string)

timestamps ()
end
end




OK, sold. Let's integrate.

{
text: "My first note."

.insert! ()




Your DB won't even notice

.bingenerate()
.cast! (ulid)

With just a bit more code we could easly render ULIDs as UUIDs in
our app.



Back to our exapmle

users = for username <« ~w(andrei dino vlado) do
%{
id: : .bingenerate(),
username: username

}




Back to our example

SELECT username FROM users SORT BY username;




Use cases

e |f you're partitioning your database by date, you can use the
timestamp embedded in the ULID to select the correct partition.

.new! (~T[OO:00:00])

.to_unix(:millisecond)
.bingenerate()

e You can sort by ULID instead of a separate created_at column if
millisecond precision is acceptable.

Esp. useful if creating an index on created_at is no longer possible
(a LOT of records)



Downsides

e |f exposing the timestamp is a bad idea for your application, ULIDs
may not be the best option.

e The sort by ULID approach may not work if you need sub-
millisecond accuracy.

e Not backwards compatible with UUID (you can’t compare them!)



Alternatives

e SnowflakelD

o Simmilar aproach but it also includes a device identificator (MAC
address e.g.) to even more reduce collisions

o Not 100% sortable, but good enough
o Defunct :-(

O 244



The end




Let's connect

e andrei@0Ox7f.dev Gx ? f
o Ox/f.dev

e @floppy__h podge



mailto:andrei@0x7f.dev
https://0x7f.dev/
https://twitter.com/floppy__h_podge

