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About me

e JavaScript dev for 6 yrs
e Python dev for 2 yrs
e Elixir freelancer for 1 yr

o "Why was | writing so
much code?!" ~ me, circa
2021.
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So what’s UUID?

Universally Unique IDentifier (UUID) URN Namespace RFC 4122

Mostly unique identifiers

Globally accepted solution for database IDs

4a823cf9-b89b-40bb-b823-1d98151feeB2



And what’s wrong with that?

users = for username <« ~w(andrei dino vlado) do
%{
id: : .bingenerate(),
username: username

}




And what’s wrong with that?

SELECT username FROM users SORT BY username;

e UUIDs are not lexicographically sortable.



Collisions who?

def () do
<«Lu@::48, _::4, ul::12, _::2, u2::62>> = :.crypto.strong_rand_bytes(16)
<Ku0::48, 4::4, ul::12, 2::2, uUu2::62>>

end

def (timestamp \\ .system_time(:millisecond)) do
<<timestamp::unsigned-size(48), :crypto.strong_rand_bytes(10) ::binary>>
end

TBH UUIDs won't really colide all that often :D



OK, sold. Let's integrate.

defmodule
use

def do
create table("notes", primary_key: false) do
add(:id, :binary_id, primary_key: true)
add(:text, :text)

timestamps ()
end
end
end

, 1_.653_764_519,




OK, sold. Let's integrate.

defmodule
use

@primary_key {:1id, : , autogenerate: true}

schema "notes" do
field(:text, :string)

timestamps ()
end
end




OK, sold. Let's integrate.

{
text: "My first note."

.insert! ()




Your DB won't even notice

.bingenerate()
.cast! (ulid)

With just a bit more code we could easly render ULIDs as UUIDs in
our app.



Back to our exapmle

users = for username <« ~w(andrei dino vlado) do
%{
id: : .bingenerate(),
username: username

}




Back to our example

SELECT username FROM users SORT BY username;




Use cases

e |f you're partitioning your database by date, you can use the
timestamp embedded in the ULID to select the correct partition.

.new! (~T[OO:00:00])

.to_unix(:millisecond)
.bingenerate()

e You can sort by ULID instead of a separate created_at column if
millisecond precision is acceptable.

Esp. useful if creating an index on created_at is no longer possible
(a LOT of records)



Downsides

e |f exposing the timestamp is a bad idea for your application, ULIDs
may not be the best option.

e The sort by ULID approach may not work if you need sub-
millisecond accuracy.

e Not backwards compatible with UUID (you can’t compare them!)



Alternatives

e SnowflakelD

o Simmilar aproach but it also includes a device identificator (MAC
address e.g.) to even more reduce collisions

o Not 100% sortable, but good enough
o Defunct :-(

O 244



The end
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